Homotopy Lie Algebra of the Complements of Subspace Arrangements with Geometric Lattices

نویسنده

  • GERY DEBONGNIE
چکیده

Let A be a geometric arrangement such that codim(x) ≥ 2 for every x ∈ A. We prove that, if the complement space M(A) is rationally hyperbolic, then there exists an injective map L(u, v) → π⋆(ΩM(A)) ⊗ Q.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formality of the Complements of Subspace Arrangements with Geometric Lattices

We show that, for an arrangement of subspaces in a complex vector space with geometric intersection lattice, the complement of the arrangement is formal. We prove that the Morgan rational model for such an arrangement complement is formal as a differential graded algebra.

متن کامل

Homotopy Lie algebras, lower central series and the Koszul property

Let X and Y be finite-type CW–complexes (X connected, Y simply connected), such that the rational cohomology ring of Y is a k–rescaling of the rational cohomology ring of X . Assume H∗(X,Q) is a Koszul algebra. Then, the homotopy Lie algebra π∗(ΩY ) ⊗ Q equals, up to k–rescaling, the graded rational Lie algebra associated to the lower central series of π1(X). If Y is a formal space, this equali...

متن کامل

On the Homotopy Lie Algebra of an Arrangement

Let A be a graded-commutative, connected k-algebra generated in degree 1. The homotopy Lie algebra gA is defined to be the Lie algebra of primitives of the Yoneda algebra, ExtA(k, k). Under certain homological assumptions on A and its quadratic closure, we express gA as a semi-direct product of the well-understood holonomy Lie algebra hA with a certain hA-module. This allows us to compute the h...

متن کامل

On Cohomology Algebras of Complex Subspace Arrangements

The integer cohomology algebra of the complement of a complex subspace arrangement with geometric intersection lattice is completely determined by the combinatorial data of the arrangement. We give a combinatorial presentation of the cohomology algebra in the spirit of the Orlik-Solomon result on the cohomology algebras of complex hyperplane arrangements. Our methods are elementary: we work wit...

متن کامل

Rational Homotopy Type of Subspace Arrangements with a Geometric Lattice

Let A = {x1, . . . , xn} be a subspace arrangement with a geometric lattice such that codim(x) ≥ 2 for every x ∈ A. Using rational homotopy theory, we prove that the complement M(A) is rationally elliptic if and only if the sum x 1 + . . . + x n is a direct sum. The homotopy type of M(A) is also given : it is a product of odd dimensional spheres. Finally, some other equivalent conditions are gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007